'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
This paper considers jointly optimal design of crosslayer congestion control, routing and scheduling for ad hoc
wireless networks. We first formulate the rate constraint and scheduling constraint using multicommodity flow variables, and formulate resource allocation in networks with fixed wireless channels (or single-rate wireless devices that can mask channel variations) as a utility maximization problem with these constraints.
By dual decomposition, the resource allocation problem
naturally decomposes into three subproblems: congestion control,
routing and scheduling that interact through congestion price.
The global convergence property of this algorithm is proved. We
next extend the dual algorithm to handle networks with timevarying
channels and adaptive multi-rate devices. The stability
of the resulting system is established, and its performance is
characterized with respect to an ideal reference system which
has the best feasible rate region at link layer.
We then generalize the aforementioned results to a general
model of queueing network served by a set of interdependent
parallel servers with time-varying service capabilities, which
models many design problems in communication networks. We
show that for a general convex optimization problem where a
subset of variables lie in a polytope and the rest in a convex set,
the dual-based algorithm remains stable and optimal when the
constraint set is modulated by an irreducible finite-state Markov
chain. This paper thus presents a step toward a systematic way
to carry out cross-layer design in the framework of “layering as
optimization decomposition” for time-varying channel models