I prove the subgame-perfect equivalent of the basic result for Nash equilibria in normal-form games of strategic complements: the set of subgame-perfect equilibria is a nonempty, complete lattice—in particular, subgame-perfect Nash equilibria exist. For this purpose I introduce a device that allows the study of the set of subgame-perfect equilibria as the set of fixed points of a correspondence. My results are limited because extensive-form games of strategic complementarities turn out—surprisingly—to be a very restrictive class of games