Multiple solutions and periodic oscillations in nonlinear diffusion processes


We study the oscillatory stationary states in the temperature and concentration fields occurring in tubular chemical reactors. Singular perturbation and multitime scale procedures are combined formally to clearly and simply reveal the mechanism controlling these oscillatory states. Their stability is also studied, and when coupled with previously obtained results on multiple steady states, this information completes the response (bifurcation) diagram in one-parameter range of the tubular reactor. The results apply also to more general nonlinear parabolic problems of which the first order tubular reactor is a special case

    Similar works