Neutron resonance spectroscopy for the characterisation of materials and objects


The use of neutron resonance spectroscopy to investigate and study properties of materials and objects is the basis of neutron resonance transmission analysis (NRTA) and neutron resonance capture analysis (NRCA). NRTA and NRCA are non-destructive methods to determine the elemental and isotopic composition without the need of any sample preparation and resulting in a negligible residual activity. The basic principles of NRTA and NRCA are explained. The use of NRTA and NRCA to determine the elemental composition of archaeological objects and to characterise nuclear materials is reviewed. Other applications of neutron resonance spectroscopy such as imaging, detection of explosives and drugs and thermometry are briefly discussed. A combination of NRTA and NRCA, referred to as Neutron Resonance Densitometry (NRD), is presented as a non-destructive method to quantify nuclear material, in particular the amount of special nuclear material in particle-like debris of melted fuel that is formed in severe nuclear accidents. Finally the importance of accurate nuclear resonance parameters for these applications is discussed and the performance of NRTA for the characterization of nuclear material in the presence of matrix material is assessed.JRC.D.4-Standards for Nuclear Safety, Security and Safeguard

    Similar works