CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Transcription factor activity estimation based on particle swarm optimization and fast network component analysis
Authors
C Chang
W Chen
YS Hung
Publication date
1 January 2010
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Cite
Abstract
Proceedings of the IEEE Engineering in Medicine and Biology Society Conference, 2010, p. 1061-1064Transcription factors (TFs) play an important role in regulating the expression of genes. The accurate measurement of transcription factor activities (TFAs) depends on a series of experimental technologies of molecular biology and is intractable in most practical situations. Some signal processing methods for blind source separation have been applied in the prediction of TFAs from gene expression data. Most of such methods make use of statistical properties of the gene expression data only, leading to the inaccurate detection of TFAs. In contrast, network component analysis (NCA) can provide much improved result through utilizing the structural information of the gene regulatory network. However, the structure of the gene regulatory network, required by NCA, is not available in most practical cases so that NCA is not directly applicable. In this paper, we propose to use particle swarm optimization (PSO) to find the most plausible network structure iteratively from the gene expression data, with the assistance of recently developed fast algorithm for network component analysis (FastNCA). This novel approach to TFA inference can thus take advantage of NCA, even when the required network structure is unknown. The effectiveness of our novel approach has been demonstrated by applications to both simulated data and real gene expression microarray data, in the sense that TFAs can be inferred with high accuracy. © 2010 IEEE.published_or_final_versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/129700
Last time updated on 01/06/2016
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fiembs.2010....
Last time updated on 21/07/2021