CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
A new optimization algorithm for network component analysis based on convex programming
Authors
C Chang
Z Ding
SH Yeung
Publication date
1 January 2009
Publisher
'United States Sports Academy'
Doi
Abstract
Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2009, p. 509-512Paper no. 2203Network component analysis (NCA) has been established as a promising tool for reconstructing gene regulatory networks from microarray data. NCA is a method that can resolve the problem of blind source separation when the mixing matrix instead has a known sparse structure despite the correlation among the source signals. The original NCA algorithm relies on alternating least squares (ALS) and suffers from local convergence as well as slow convergence. In this paper, we develop new and more robust NCA algorithms by incorporating additional signal constraints. In particular, we introduce the biologically sound constraints that all nonzero entries in the connectivity network are positive. Our new approach formulates a convex optimization problem which can be solved efficiently and effectively by fast convex programming algorithms. We verify the effectiveness and robustness of our new approach using simulations and gene regulatory network reconstruction from experimental yeast cell cycle microarray data. ©2009 IEEE.published_or_final_versio
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/62038
Last time updated on 01/06/2016
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 20/07/2021