In view of the inapplicability of the asymptotic expressions for the stopping number available in the literature at high energies, an alternative approach is taken to compute the shell correction to the stopping number of K electrons. Anholt\u27s formula (1979) for the K-shell ionization has been used to calculate the excitation function for longitudinal interaction and numerical integration over energy has been carried out to evaluate the shell correction. Comparison with other theoretical calculations is made. It is proposed that, with the inclusion of relativistic effects, an asymptotic expansion of the stopping number with a leading-term logarithmic in the energy of the incident particle would be more meaningful and might enable one to extract the relativistic contribution to the shell correction from it