Wnt/β-catenin signaling regulates ependymal cell development and adult homeostasis

Abstract

Significance Little is known about the cellular origin and the molecular signals that regulate spinal cord ependymal cells. In this report, we characterize Wnt-responsive progenitor cells throughout spinal cord development, showing that they are restricted to the dorsal midline and give rise to dorsal ependymal cells in a spatially restricted pattern. In the postnatal and adult spinal cord, ependymal cells continue to exhibit Wnt/β-catenin signaling activity, which promotes ependymal cell proliferation. This is demonstrated by the genetic elimination of β-catenin and inhibition of Wnt secretion in Wnt-activated ependymal cells in vivo, which result in impaired proliferation. Our results thus reveal the molecular signals underlying the formation and regulation of spinal cord ependymal cells.</jats:p

    Similar works

    Full text

    thumbnail-image

    Available Versions