research

The theory of stochastic cosmological lensing

Abstract

On the scale of the light beams subtended by small sources, e.g. supernovae, matter cannot be accurately described as a fluid, which questions the applicability of standard cosmic lensing to those cases. In this article, we propose a new formalism to deal with small-scale lensing as a diffusion process: the Sachs and Jacobi equations governing the propagation of narrow light beams are treated as Langevin equations. We derive the associated Fokker-Planck-Kolmogorov equations, and use them to deduce general analytical results on the mean and dispersion of the angular distance. This formalism is applied to random Einstein-Straus Swiss-cheese models, allowing us to: (1) show an explicit example of the involved calculations; (2) check the validity of the method against both ray-tracing simulations and direct numerical integrations of the Langevin equation. As a byproduct, we obtain a post-Kantowski-Dyer-Roeder approximation, accounting for the effect of tidal distortions on the angular distance, in excellent agreement with numerical results. Besides, the dispersion of the angular distance is correctly reproduced in some regimes.Comment: 37+13 pages, 8 figures. A few typos corrected. Matches published versio

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 19/05/2022