Encodings or the proof of their absence are the main way to compare process
calculi. To analyse the quality of encodings and to rule out trivial or
meaningless encodings, they are augmented with quality criteria. There exists a
bunch of different criteria and different variants of criteria in order to
reason in different settings. This leads to incomparable results. Moreover it
is not always clear whether the criteria used to obtain a result in a
particular setting do indeed fit to this setting. We show how to formally
reason about and compare encodability criteria by mapping them on requirements
on a relation between source and target terms that is induced by the encoding
function. In particular we analyse the common criteria full abstraction,
operational correspondence, divergence reflection, success sensitiveness, and
respect of barbs; e.g. we analyse the exact nature of the simulation relation
(coupled simulation versus bisimulation) that is induced by different variants
of operational correspondence. This way we reduce the problem of analysing or
comparing encodability criteria to the better understood problem of comparing
relations on processes.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.06347. The Isabelle/HOL
source files, and a full proof document, are available in the Archive of
Formal Proofs, at
http://afp.sourceforge.net/entries/Encodability_Process_Calculi.shtm