research

Ab initio transport results for strongly correlated fermions

Abstract

Quantum transport of strongly correlated fermions is of central interest in condensed matter physics. Here, we present first-principle nonequilibrium Green functions results using TT-matrix selfenergies for finite Hubbard clusters of dimension 1,2,31,2,3. We compute the expansion dynamics following a potential quench and predict its dependence on the interaction strength and particle number. We discover a universal scaling, allowing an extrapolation to infinite-size systems, which shows excellent agreement with recent cold atom diffusion experiments [Schneider et al., Nat. Phys. 8, 213 (2012)]

    Similar works

    Full text

    thumbnail-image