research

Breathing Modes in Rotating Bose-Condensed Gas: An Exact Diagonalization Study

Abstract

We present an exact diagonalization study of the breathing mode collective excitations for a rotating Bose-Einstein condensate of N=10N=10 spinless bosons interacting via repulsive finite-range Gaussian potential and harmonically confined in quasi-two-dimension. The yrast state and the low-lying excited states are variationally obtained in given subspaces of the quantized total angular momentum LL employing the beyond lowest Landau level approximation in slowly rotating regime with 0L<2N0 \le L < 2N. For a given LL, the low-energy eigenspectra (bands) are obtained in weakly to moderately interacting regime. Further, for a given interaction, the split in low-lying eigenenergies with increasing LL is the precursor to spontaneous symmetry breaking of the axisymmetry associated with the entry of the first vortex. With increase in repulsive interaction, the value of the first breathing mode increases for stable total angular momentum states L=0~\mbox{and}~N, but decreases for intermediate 0<L<N0<L<N metastable states. The position of the observed first breathing modes in the eigenspectrum remains unchanged as the interaction is varied over several orders of magnitude.Comment: 5 pages, 3 figures, RevTex two colum

    Similar works

    Full text

    thumbnail-image

    Available Versions