Quantum technology relies on the utilization of resources, like quantum
coherence and entanglement, which allow quantum information and computation
processing. This achievement is however jeopardized by the detrimental effects
of the environment surrounding any quantum system, so that finding strategies
to protect quantum resources is essential. Non-Markovian and structured
environments are useful tools to this aim. Here we show how a simple
environmental architecture made of two coupled lossy cavities enables a switch
between Markovian and non-Markovian regimes for the dynamics of a qubit
embedded in one of the cavity. Furthermore, qubit coherence can be indefinitely
preserved if the cavity without qubit is perfect. We then focus on entanglement
control of two independent qubits locally subject to such an engineered
environment and discuss its feasibility in the framework of circuit quantum
electrodynamics. With up-to-date experimental parameters, we show that our
architecture allows entanglement lifetimes orders of magnitude longer than the
spontaneous lifetime without local cavity couplings. This cavity-based
architecture is straightforwardly extendable to many qubits for scalability.Comment: 12 pages, 9 figures, 1 table. To appear on Nature Scientific Report