We demonstrate that graphene placed on top of structured substrates offers a
novel approach for trapping and guiding surface plasmons. A monolayer graphene
with a spatially varying curvature exhibits an effective trapping potential for
graphene plasmons near curved areas such as bumps, humps and wells. We derive
the governing equation for describing such localized channel plasmons guided by
curved graphene and validate our theory by the first-principle numerical
simulations. The proposed confinement mechanism enables plasmon guiding by the
regions of maximal curvature, and it offers a versatile platform for
manipulating light in planar landscapes. In addition, isolated deformations of
graphene such as bumps are shown to support localized surface modes and
resonances suggesting a new way to engineer plasmonic metasurfaces.Comment: 6 pages, 4 figure