We investigate projected scaled gradient (PSG) methods for convex
minimization problems. These methods perform a descent step along a diagonally
scaled gradient direction followed by a feasibility regaining step via
orthogonal projection onto the constraint set. This constitutes a generalized
algorithmic structure that encompasses as special cases the gradient projection
method, the projected Newton method, the projected Landweber-type methods and
the generalized Expectation-Maximization (EM)-type methods. We prove the
convergence of the PSG methods in the presence of bounded perturbations. This
resilience to bounded perturbations is relevant to the ability to apply the
recently developed superiorization methodology to PSG methods, in particular to
the EM algorithm.Comment: Computational Optimization and Applications, accepted for publicatio