We pursue our study of the antiperiodic dynamical 6-vertex model using
Sklyanin's separation of variables approach, allowing in the model new possible
global shifts of the dynamical parameter. We show in particular that the
spectrum and eigenstates of the antiperiodic transfer matrix are completely
characterized by a system of discrete equations. We prove the existence of
different reformulations of this characterization in terms of functional
equations of Baxter's type. We notably consider the homogeneous functional
T-Q equation which is the continuous analog of the aforementioned discrete
system and show, in the case of a model with an even number of sites, that the
complete spectrum and eigenstates of the antiperiodic transfer matrix can
equivalently be described in terms of a particular class of its Q-solutions,
hence leading to a complete system of Bethe equations. Finally, we compute the
form factors of local operators for which we obtain determinant representations
in finite volume.Comment: 52 page