In this paper, we consider the task of learning control policies for
text-based games. In these games, all interactions in the virtual world are
through text and the underlying state is not observed. The resulting language
barrier makes such environments challenging for automatic game players. We
employ a deep reinforcement learning framework to jointly learn state
representations and action policies using game rewards as feedback. This
framework enables us to map text descriptions into vector representations that
capture the semantics of the game states. We evaluate our approach on two game
worlds, comparing against baselines using bag-of-words and bag-of-bigrams for
state representations. Our algorithm outperforms the baselines on both worlds
demonstrating the importance of learning expressive representations.Comment: 11 pages, Appearing at EMNLP, 201