Plasmons, the collective oscillations of interacting electrons, possess
emergent properties that dramatically alter the optical response of metals. We
predict the existence of a new class of plasmons -- chiral Berry plasmons
(CBPs) -- for a wide range of two-dimensional metallic systems including gapped
Dirac materials. As we show, in these materials the interplay between Berry
curvature and electron-electron interactions yields chiral plasmonic modes at
zero magnetic field. The CBP modes are confined to system boundaries, even in
the absence of topological edge states, with chirality manifested in split
energy dispersions for oppositely directed plasmon waves. We unveil a rich CBP
phenomenology and propose setups for realizing them, including in anomalous
Hall metals and optically-pumped 2D Dirac materials. Realization of CBPs will
offer a new paradigm for magnetic field-free, sub-wavelength optical
non-reciprocity, in the mid IR-THz range, with tunable splittings as large as
tens of THz, as well as sensitive all-optical diagnostics of topological bands.Comment: 10 pgs, 3 fg