We present the first simulations of tidal stirring of dwarf galaxies in the
Local Group carried out in a cosmological context. We use the ErisDARK
simulation of a MW-sized galaxy to identify some of the most massive subhalos
(Mvir>108M⊙) that fall into the main host before z=2.
Subhalos are replaced before infall with high-resolution models of dwarf
galaxies comprising a faint stellar disk embedded in a dark matter halo. The
set of models contains cuspy halos as well as halos with "cored" profiles (with
asymptotic inner slope γ=0.6). The simulations are then run to z=0
with as many as 54 million particles and resolution as small as ∼4 pc
using the N-Body code ChaNGa. The stellar components of all satellites are
significantly affected by tidal stirring, losing stellar mass and undergoing a
morphological transformation towards a pressure supported spheroidal system.
However, while some remnants with cuspy halos maintain significant rotational
flattening and disk-like features, all the shallow halo models achieve
v/σ<0.5 and round shapes typical of dSph satellites of the MW and M31.
Mass loss is also enhanced in the latter, and remnants can reach luminosities
and velocity dispersions as low as those of Ultra Faint Dwarfs (UFDs). We argue
that cuspy progenitors must be the exception rather than the rule among
satellites of the MW since all the MW and M31 satellites in the luminosity
range of our remnants are dSphs, a result matched only in the simulation with
"cored" models