research

Towards Structured Deep Neural Network for Automatic Speech Recognition

Abstract

In this paper we propose the Structured Deep Neural Network (Structured DNN) as a structured and deep learning algorithm, learning to find the best structured object (such as a label sequence) given a structured input (such as a vector sequence) by globally considering the mapping relationships between the structure rather than item by item. When automatic speech recognition is viewed as a special case of such a structured learning problem, where we have the acoustic vector sequence as the input and the phoneme label sequence as the output, it becomes possible to comprehensively learned utterance by utterance as a whole, rather than frame by frame. Structured Support Vector Machine (structured SVM) was proposed to perform ASR with structured learning previously, but limited by the linear nature of SVM. Here we propose structured DNN to use nonlinear transformations in multi-layers as a structured and deep learning algorithm. It was shown to beat structured SVM in preliminary experiments on TIMIT

    Similar works

    Full text

    thumbnail-image

    Available Versions