research

Approaching Many-Body Localization from Disordered Luttinger Liquids via the Functional Renormalization Group

Abstract

We study the interplay of interactions and disorder in a one-dimensional fermion lattice coupled adiabatically to infinite reservoirs. We employ both the functional renormalization group (FRG) as well as matrix product state techniques, which serve as an accurate benchmark for small systems. Using the FRG, we compute the length- and temperature-dependence of the conductance averaged over 10410^4 samples for lattices as large as 10510^{5} sites. We identify regimes in which non-ohmic power law behavior can be observed and demonstrate that the corresponding exponents can be understood by adapting earlier predictions obtained perturbatively for disordered Luttinger liquids. In presence of both disorder and isolated impurities, the conductance has a universal single-parameter scaling form. This lays the groundwork for an application of the functional renormalization group to the realm of many-body localization

    Similar works