research

Scalar-Fluid theories: cosmological perturbations and large-scale structure

Abstract

Recently a new Lagrangian framework was introduced to describe interactions between scalar fields and relativistic perfect fluids. This allows two consistent generalizations of coupled quintessence models: non-vanishing pressures and a new type of derivative interaction. Here the implications of these to the formation of cosmological large-scale structure are uncovered at the linear order. The full perturbation equations in the two cases are derived in a unified formalism and their Newtonian, quasi-static limit is studied analytically. Requiring the absence of an effective sound speed for the coupled dark matter fluid restricts the Lagrangian to be a linear function of the matter number density. This still leaves new potentially viable classes of both algebraically and derivatively interacting models wherein the coupling may impact the background expansion dynamics and imprint signatures into the large-scale structure.Comment: 1+30 pages, a figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2025