Rough index theory on spaces of polynomial growth and contractibility


We will show that for a polynomially contractible manifold of bounded geometry and of polynomial volume growth every coarse and rough cohomology class pairs continuously with the K-theory of the uniform Roe algebra. As an application we will discuss non-vanishing of rough index classes of Dirac operators over such manifolds, and we will furthermore get higher-codimensional index obstructions to metrics of positive scalar curvature on closed manifolds with virtually nilpotent fundamental groups. We will give a computation of the homology of (a dense, smooth subalgebra of) the uniform Roe algebra of manifolds of polynomial volume growth.Comment: v4: final version, to appear in J. Noncommut. Geom. v3: added a computation of the homology of (a smooth subalgebra of) the uniform Roe algebra. v2: added as corollaries to the main theorem the multi-partitioned manifold index theorem and the higher-codimensional index obstructions against psc-metrics, added a proof of the strong Novikov conjecture for virtually nilpotent groups, changed the titl

    Similar works