research

A Further Study of the Frampton-Glashow-Yanagida Model for Neutrino Masses, Flavor Mixing and Baryon Number Asymmetry

Abstract

In light of the latest neutrino oscillation data, we revisit the minimal scenario of type-I seesaw model, in which only two heavy right-handed Majorana neutrinos are introduced to account for both tiny neutrino masses and the baryon number asymmetry in our Universe. In this framework, we carry out a systematic study of the Frampton-Glashow-Yanagida ansatz by taking into account the renormalization-group running of neutrino mixing parameters and the flavor effects in leptogenesis. We demonstrate that the normal neutrino mass ordering is disfavored even in the minimal supersymmetric standard model with a large value of tanβ\tan \beta, for which the running effects could be significant. Furthermore, it is pointed out that the original scenario with a hierarchical mass spectrum of heavy Majorana neutrinos contradicts with the upper bound derived from a naturalness criterion, and the resonant mechanism with nearly-degenerate heavy Majorana neutrinos can be a possible way out.Comment: 24 pages, 4 figures, 2 tables, more discussions added, to appear in JHE

    Similar works