A longstanding question in computer vision concerns the representation of 3D
shapes for recognition: should 3D shapes be represented with descriptors
operating on their native 3D formats, such as voxel grid or polygon mesh, or
can they be effectively represented with view-based descriptors? We address
this question in the context of learning to recognize 3D shapes from a
collection of their rendered views on 2D images. We first present a standard
CNN architecture trained to recognize the shapes' rendered views independently
of each other, and show that a 3D shape can be recognized even from a single
view at an accuracy far higher than using state-of-the-art 3D shape
descriptors. Recognition rates further increase when multiple views of the
shapes are provided. In addition, we present a novel CNN architecture that
combines information from multiple views of a 3D shape into a single and
compact shape descriptor offering even better recognition performance. The same
architecture can be applied to accurately recognize human hand-drawn sketches
of shapes. We conclude that a collection of 2D views can be highly informative
for 3D shape recognition and is amenable to emerging CNN architectures and
their derivatives.Comment: v1: Initial version. v2: An updated ModelNet40 training/test split is
used; results with low-rank Mahalanobis metric learning are added. v3 (ICCV
2015): A second camera setup without the upright orientation assumption is
added; some accuracy and mAP numbers are changed slightly because a small
issue in mesh rendering related to specularities is fixe