Anticipating actions and objects before they start or appear is a difficult
problem in computer vision with several real-world applications. This task is
challenging partly because it requires leveraging extensive knowledge of the
world that is difficult to write down. We believe that a promising resource for
efficiently learning this knowledge is through readily available unlabeled
video. We present a framework that capitalizes on temporal structure in
unlabeled video to learn to anticipate human actions and objects. The key idea
behind our approach is that we can train deep networks to predict the visual
representation of images in the future. Visual representations are a promising
prediction target because they encode images at a higher semantic level than
pixels yet are automatic to compute. We then apply recognition algorithms on
our predicted representation to anticipate objects and actions. We
experimentally validate this idea on two datasets, anticipating actions one
second in the future and objects five seconds in the future.Comment: CVPR 201