Recently, two-dimensional (2D) materials with strong in-plane anisotropic
properties such as black phosphorus have demonstrated great potential for
developing new devices that can take advantage of its reduced lattice symmetry
with potential applications in electronics, optoelectronics and
thermoelectrics. However, the selection of 2D material with strong in-plane
anisotropy has so far been very limited and only sporadic studies have been
devoted to transition metal dichalcogenides (TMDC) materials with reduced
lattice symmetry, which is yet to convey the full picture of their optical and
phonon properties, and the anisotropy in their interlayer interactions. Here,
we study the anisotropic interlayer interactions in an important TMDC 2D
material with reduced in-plane symmetry - atomically thin rhenium diselenide
(ReSe2) - by investigating its ultralow frequency interlayer phonon vibration
modes, the layer dependent optical bandgap, and the anisotropic
photoluminescence (PL) spectra for the first time. The ultralow frequency
interlayer Raman spectra combined with the first study of polarization-resolved
high frequency Raman spectra in mono- and bi-layer ReSe2 allows deterministic
identification of its layer number and crystal orientation. PL measurements
show anisotropic optical emission intensity with bandgap increasing from 1.26
eV in the bulk to 1.32 eV in monolayer, consistent with the theoretical results
based on first-principle calculations. The study of the layer-number dependence
of the Raman modes and the PL spectra reveals the relatively weak van der Waals
interaction and 2D quantum confinement in atomically-thin ReSe2.Comment: 17 pages, 5 figures, supplementary informatio