Understanding the dynamic mechanisms that drive the high-impact scientific
work (e.g., research papers, patents) is a long-debated research topic and has
many important implications, ranging from personal career development and
recruitment search, to the jurisdiction of research resources. Recent advances
in characterizing and modeling scientific success have made it possible to
forecast the long-term impact of scientific work, where data mining techniques,
supervised learning in particular, play an essential role. Despite much
progress, several key algorithmic challenges in relation to predicting
long-term scientific impact have largely remained open. In this paper, we
propose a joint predictive model to forecast the long-term scientific impact at
the early stage, which simultaneously addresses a number of these open
challenges, including the scholarly feature design, the non-linearity, the
domain-heterogeneity and dynamics. In particular, we formulate it as a
regularized optimization problem and propose effective and scalable algorithms
to solve it. We perform extensive empirical evaluations on large, real
scholarly data sets to validate the effectiveness and the efficiency of our
method.Comment: Correct some typos in our KDD pape