The goal of this work is to formally abstract a Markov process evolving in
discrete time over a general state space as a finite-state Markov chain, with
the objective of precisely approximating its state probability distribution in
time, which allows for its approximate, faster computation by that of the
Markov chain. The approach is based on formal abstractions and employs an
arbitrary finite partition of the state space of the Markov process, and the
computation of average transition probabilities between partition sets. The
abstraction technique is formal, in that it comes with guarantees on the
introduced approximation that depend on the diameters of the partitions: as
such, they can be tuned at will. Further in the case of Markov processes with
unbounded state spaces, a procedure for precisely truncating the state space
within a compact set is provided, together with an error bound that depends on
the asymptotic properties of the transition kernel of the original process. The
overall abstraction algorithm, which practically hinges on piecewise constant
approximations of the density functions of the Markov process, is extended to
higher-order function approximations: these can lead to improved error bounds
and associated lower computational requirements. The approach is practically
tested to compute probabilistic invariance of the Markov process under study,
and is compared to a known alternative approach from the literature.Comment: 29 pages, Journal of Logical Methods in Computer Scienc