research

Linear-in-mass-ratio contribution to spin precession and tidal invariants in Schwarzschild spacetime at very high post-Newtonian order

Abstract

Using black hole perturbation theory and arbitrary-precision computer algebra, we obtain the post-Newtonian (pN) expansions of the linear-in-mass-ratio corrections to the spin-precession angle and tidal invariants for a particle in circular orbit around a Schwarzschild black hole. We extract coefficients up to 20pN order from numerical results that are calculated with an accuracy greater than 1 part in 1050010^{500}. These results can be used to calibrate parameters in effective-one-body models of compact binaries, specifically the spin-orbit part of the effective Hamiltonian and the dynamically significant tidal part of the main radial potential of the effective metric. Our calculations are performed in a radiation gauge, which is known to be singular away from the particle. To overcome this irregularity, we define suitable Detweiler-Whiting singular and regular fields in this gauge, and we devise a rigorous mode-sum regularization method to compute the invariants constructed from the regular field

    Similar works

    Full text

    thumbnail-image