We propose an efficient nonparametric strategy for learning a message
operator in expectation propagation (EP), which takes as input the set of
incoming messages to a factor node, and produces an outgoing message as output.
This learned operator replaces the multivariate integral required in classical
EP, which may not have an analytic expression. We use kernel-based regression,
which is trained on a set of probability distributions representing the
incoming messages, and the associated outgoing messages. The kernel approach
has two main advantages: first, it is fast, as it is implemented using a novel
two-layer random feature representation of the input message distributions;
second, it has principled uncertainty estimates, and can be cheaply updated
online, meaning it can request and incorporate new training data when it
encounters inputs on which it is uncertain. In experiments, our approach is
able to solve learning problems where a single message operator is required for
multiple, substantially different data sets (logistic regression for a variety
of classification problems), where it is essential to accurately assess
uncertainty and to efficiently and robustly update the message operator.Comment: accepted to UAI 2015. Correct typos. Add more content to the
appendix. Main results unchange