We propose a sampling scheme on the sphere and develop a corresponding
spherical harmonic transform (SHT) for the accurate reconstruction of the
diffusion signal in diffusion magnetic resonance imaging (dMRI). By exploiting
the antipodal symmetry, we design a sampling scheme that requires the optimal
number of samples on the sphere, equal to the degrees of freedom required to
represent the antipodally symmetric band-limited diffusion signal in the
spectral (spherical harmonic) domain. Compared with existing sampling schemes
on the sphere that allow for the accurate reconstruction of the diffusion
signal, the proposed sampling scheme reduces the number of samples required by
a factor of two or more. We analyse the numerical accuracy of the proposed SHT
and show through experiments that the proposed sampling allows for the accurate
and rotationally invariant computation of the SHT to near machine precision
accuracy.Comment: Will be published in the proceedings of the International Conference
Acoustics, Speech and Signal Processing 2015 (ICASSP'2015