Crowdsourcing platforms are now extensively used for conducting subjective
pairwise comparison studies. In this setting, a pairwise comparison dataset is
typically gathered via random sampling, either \emph{with} or \emph{without}
replacement. In this paper, we use tools from random graph theory to analyze
these two random sampling methods for the HodgeRank estimator. Using the
Fiedler value of the graph as a measurement for estimator stability
(informativeness), we provide a new estimate of the Fiedler value for these two
random graph models. In the asymptotic limit as the number of vertices tends to
infinity, we prove the validity of the estimate. Based on our findings, for a
small number of items to be compared, we recommend a two-stage sampling
strategy where a greedy sampling method is used initially and random sampling
\emph{without} replacement is used in the second stage. When a large number of
items is to be compared, we recommend random sampling with replacement as this
is computationally inexpensive and trivially parallelizable. Experiments on
synthetic and real-world datasets support our analysis