Optimizing activation and deactivation of base station transmissions provides
an instrument for improving energy efficiency in cellular networks. In this
paper, we study optimal cell clustering and scheduling of activation duration
for each cluster, with the objective of minimizing the sum energy, subject to a
time constraint of delivering the users' traffic demand. The cells within a
cluster are simultaneously in transmission and napping modes, with cluster
activation and deactivation, respectively. Our optimization framework accounts
for the coupling relation among cells due to the mutual interference. Thus, the
users' achievable rates in a cell depend on the cluster composition. On the
theoretical side, we provide mathematical formulation and structural
characterization for the energy-efficient cell clustering and scheduling
optimization problem, and prove its NP hardness. On the algorithmic side, we
first show how column generation facilitates problem solving, and then present
our notion of local enumeration as a flexible and effective means for dealing
with the trade-off between optimality and the combinatorial nature of cluster
formation, as well as for the purpose of gauging the deviation from optimality.
Numerical results demonstrate that our solutions achieve more than 60% energy
saving over existing schemes, and that the solutions we obtain are within a few
percent of deviation from global optimum.Comment: Revision, IEEE Transactions on Wireless Communication