research

Relativistic density functional theory for finite nuclei and neutron stars

Abstract

The main goal of the present contribution is a pedagogical introduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful--and perhaps unique--framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich matter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics--particularly certain kind of laboratory experiments--can provide significant constrains on the behavior of neutron-rich matter.Comment: Contributing chapter to the book "Relativistic Density Functional for Nuclear Structure"; World Scientific Publishing Company (Singapore); Editor Prof. Jie Meng (Peking University

    Similar works

    Full text

    thumbnail-image

    Available Versions