We demonstrate a reconfigurable quantum dot gate architecture that
incorporates two interchangeable transport channels. One channel is used to
form quantum dots and the other is used for charge sensing. The quantum dot
transport channel can support either a single or a double quantum dot. We
demonstrate few-electron occupation in a single quantum dot and extract
charging energies as large as 6.6 meV. Magnetospectroscopy is used to measure
valley splittings in the range of 35-70 microeV. By energizing two additional
gates we form a few-electron double quantum dot and demonstrate tunable tunnel
coupling at the (1,0) to (0,1) interdot charge transition.Comment: Related papers at http://pettagroup.princeton.ed