Collocation has become a standard tool for approximation of parameterized
systems in the uncertainty quantification (UQ) community. Techniques for
least-squares regularization, compressive sampling recovery, and interpolatory
reconstruction are becoming standard tools used in a variety of applications.
Selection of a collocation mesh is frequently a challenge, but methods that
construct geometrically "unstructured" collocation meshes have shown great
potential due to attractive theoretical properties and direct, simple
generation and implementation. We investigate properties of these meshes,
presenting stability and accuracy results that can be used as guides for
generating stochastic collocation grids in multiple dimensions.Comment: 29 pages, 6 figure