The increasingly wide application of Cloud Computing enables the
consolidation of tens of thousands of applications in shared infrastructures.
Thus, meeting the quality of service requirements of so many diverse
applications in such shared resource environments has become a real challenge,
especially since the characteristics and workload of applications differ widely
and may change over time. This paper presents an experimental system that can
exploit a variety of online quality of service aware adaptive task allocation
schemes, and three such schemes are designed and compared. These are a
measurement driven algorithm that uses reinforcement learning, secondly a
"sensible" allocation algorithm that assigns jobs to sub-systems that are
observed to provide a lower response time, and then an algorithm that splits
the job arrival stream into sub-streams at rates computed from the hosts'
processing capabilities. All of these schemes are compared via measurements
among themselves and with a simple round-robin scheduler, on two experimental
test-beds with homogeneous and heterogeneous hosts having different processing
capacities.Comment: 10 pages, 9 figure