We critically discuss and review the general ideas behind single- and
multi-site coarse-grained (CG) models as applied to macromolecular solutions in
the dilute and semi-dilute regime. We first consider single-site models with
zero-density and density-dependent pair potentials. We highlight advantages and
limitations of each option in reproducing the thermodynamic behavior and the
large-scale structure of the underlying reference model. As a case study we
consider solutions of linear homopolymers in a solvent of variable quality.
Secondly, we extend the discussion to multi-component systems presenting, as a
test case, results for mixtures of colloids and polymers. Specifically, we
found the CG model with zero-density potentials to be unable to predict
fluid-fluid demixing in a reasonable range of densities for mixtures of
colloids and polymers of equal size. For larger colloids, the polymer volume
fractions at which phase separation occurs are largely overestimated. CG models
with density-dependent potentials are somewhat less accurate than models with
zero-density potentials in reproducing the thermodynamics of the system and,
although they presents a phase separation, they significantly underestimate the
polymer volume fractions along the binodal. Finally, we discuss a general
multi-site strategy, which is thermodynamically consistent and fully
transferable with the number of sites, and that allows us to overcome most of
the limitations discussed for single-site models.Comment: 23 pages, 9 figures, 4 table