In this paper, we generalize two criteria, the determinant-based and
trace-based criteria proposed by Saranadasa (1993), to general populations for
high dimensional classification. These two criteria compare some distances
between a new observation and several different known groups. The
determinant-based criterion performs well for correlated variables by
integrating the covariance structure and is competitive to many other existing
rules. The criterion however requires the measurement dimension be smaller than
the sample size. The trace-based criterion in contrast, is an independence rule
and effective in the "large dimension-small sample size" scenario. An appealing
property of these two criteria is that their implementation is straightforward
and there is no need for preliminary variable selection or use of turning
parameters. Their asymptotic misclassification probabilities are derived using
the theory of large dimensional random matrices. Their competitive performances
are illustrated by intensive Monte Carlo experiments and a real data analysis.Comment: 5 figures; 22 pages. To appear in "Statistical Papers