The mesoscopic reaction-diffusion master equation (RDME) is a popular
modeling framework, frequently applied to stochastic reaction-diffusion
kinetics in systems biology. The RDME is derived from assumptions about the
underlying physical properties of the system, and it may produce unphysical
results for models where those assumptions fail. In that case, other more
comprehensive models are better suited, such as hard-sphere Brownian dynamics
(BD). Although the RDME is a model in its own right, and not inferred from any
specific microscale model, it proves useful to attempt to approximate a
microscale model by a specific choice of mesoscopic reaction rates. In this
paper we derive mesoscopic reaction rates by matching certain statistics of the
RDME solution to statistics of the solution of a widely used microscopic BD
model: the Smoluchowski model with a mixed boundary condition at the reaction
radius of two molecules. We also establish fundamental limits for the range of
mesh resolutions for which this approach yields accurate results, and show both
theoretically and in numerical examples that as we approach the lower
fundamental limit, the mesoscopic dynamics approach the microscopic dynamics