The Biophysical Society. Published by Elsevier Inc.
Doi
Abstract
AbstractCytochrome c oxidase couples electron transfer to proton transfer from inside the mitochondrion to the cytosol. Protons pass through a channel; it is closed except when protons are pumped. Electron transfer is also coupled to a water cycle. Water moves into and out of the oxidase during electron transfer, presumably through a channel. The three processes are coupled because of the common dependence on electron transfer. If water and protons had to pass through the same channel for the proton to pass, it might be possible to block the pore by entraining small molecules in the flow. The data in this report indicate that there is a correlation between the ability of a compound to inhibit the oxidase and its size. Formamide and formaldehyde are potent inhibitors. Larger and smaller molecules are poor inhibitors. Formamide introduces an internal block in electron transfer. It is a slow-onset, reversible inhibitor, dependent on turnover to manifest its effects. Vesicular oxidase is less influenced by formamide than is soluble oxidase; formamide must pass a permeability barrier to act. The data are consistent with a proton channel with constrictions at both ends that open to yield a pore of ∼4Å