CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
Grid-based scan-to-map matching for accurate simultaneous localization and mapping: Theory and preliminary numerical study
Authors
S Antol
G Dissanayake
T Furukawa
K Ryu
Publication date
1 January 2013
Publisher
'ASME International'
Doi
Cite
Abstract
This paper presents a grid-based scan-to-map matching technique for accurate simultaneous localization and mapping (SLAM). At every acquisition of a new scan, the proposed technique estimates the relative position from which the previous scan was taken, and further corrects its estimation error by matching the new scan to the globally defined map. In order to achieve best scan-to-map matching at each acquisition, the map to match is represented as a grid map with multiple normal distributions (NDs) in each cell. Additionally, the new scan is also represented by NDs, developing a novel ND-to-ND matching technique. The ND-to-ND matching technique has significant potential in the enhancement of the global matching as well as the computational efficiency. Experimental results first show that the proposed technique successfully matches new scans to the map generating very small position and orientation errors, and then demonstrates the effectiveness of the multi-ND representation in comparison to the single-ND representation. Copyright © 2013 by ASME
Similar works
Full text
Available Versions
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1115%2Fdetc2013-13...
Last time updated on 22/07/2021
OPUS - University of Technology Sydney
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:opus.lib.uts.edu.au:10453/...
Last time updated on 18/10/2019