research

Implementasi Algoritma Term Frequency ??? Inverse Document Frequency dan Vector Space Model untuk Klasifikasi Dokumen Naskah Dinas

Abstract

Pada kenyataannya dokumen naskah dinas diinstansi masih disimpan dan dicari secara manual. Penelitian ini bertujuan untuk merancang dan mengimplementasikan sistem klasifikasi dokumen naskah dinas secara otomatis dengan banyak kategori sehingga dapat mempermudah dalam penyimpanan dan pencarian dokumen naskah dinas. \ud Penelitian ini menerapkan metode text mining dengan supervised learning menggunakan algoritma term frequency ??? inverse document frequency (TF-IDF) dan vector space model. Metode text mining digunakan untuk menentukan kata kunci dokumen secara otomatis. Algoritma TF-IDF melakukan pemberian bobot pada setiap kata kunci disetiap kategori dan vector space model untuk mencari kemiripan kata kunci dengan kategori yang tersedia. Implementasi dari sistem ini menghasilkan vektor pada setiap kategori sebagai data pembelajaran. sehingga nilai vektor tersebut akan dibandingkan dengan nilai dari kata kunci dokumen yang diuji untuk mencari kemiripan / similiarity. \ud Hasil penelitian menunjukkan bahwa algoritma TF-IDF dan Vector Space Model dapat mengklasifikasikan dokumen naskah dinas dengan banyak kategori dengan akurasi hasil klasifikasi 70%-75%

    Similar works