In previous work with Pous, we defined a semantics for CCS which may both be
viewed as an innocent form of presheaf semantics and as a concurrent form of
game semantics. We define in this setting an analogue of fair testing
equivalence, which we prove fully abstract w.r.t. standard fair testing
equivalence. The proof relies on a new algebraic notion called playground,
which represents the `rule of the game'. From any playground, we derive two
languages equipped with labelled transition systems, as well as a strong,
functional bisimulation between them.Comment: 80 page