This paper introduces a receding horizon like control scheme for localizable
distributed systems, in which the effect of each local disturbance is limited
spatially and temporally. We characterize such systems by a set of linear
equality constraints, and show that the resulting feasibility test can be
solved in a localized and distributed way. We also show that the solution of
the local feasibility tests can be used to synthesize a receding horizon like
controller that achieves the desired closed loop response in a localized manner
as well. Finally, we formulate the Localized LQR (LLQR) optimal control problem
and derive an analytic solution for the optimal controller. Through a numerical
example, we show that the LLQR optimal controller, with its constraints on
locality, settling time, and communication delay, can achieve similar
performance as an unconstrained H2 optimal controller, but can be designed and
implemented in a localized and distributed way.Comment: Extended version for 2014 CDC submissio