Controlling the non adiabatic dynamics of isolated quantum systems driven
through a critical point is of interest in a variety of fields ranging from
quantum simulation to finite-time thermodynamics. We briefly review the
different methods for designing protocols which minimize excitation (defect)
production in a closed quantum critical system driven out of equilibrium. We
chart out the role of specific driving schemes for this procedure, point out
their experimental relevance, and discuss their implementation in the context
of ultracold atom and spin systems.Comment: Second version of invited review article submitted to EPJ-ST.
References added, typos corrected. 3 figures, 14 p