We consider a generic convex optimization problem associated with regularized
empirical risk minimization of linear predictors. The problem structure allows
us to reformulate it as a convex-concave saddle point problem. We propose a
stochastic primal-dual coordinate (SPDC) method, which alternates between
maximizing over a randomly chosen dual variable and minimizing over the primal
variable. An extrapolation step on the primal variable is performed to obtain
accelerated convergence rate. We also develop a mini-batch version of the SPDC
method which facilitates parallel computing, and an extension with weighted
sampling probabilities on the dual variables, which has a better complexity
than uniform sampling on unnormalized data. Both theoretically and empirically,
we show that the SPDC method has comparable or better performance than several
state-of-the-art optimization methods