Given a category C of a combinatorial nature, we study the following
fundamental question: how does the combinatorial behavior of C affect the
algebraic behavior of representations of C? We prove two general results. The
first gives a combinatorial criterion for representations of C to admit a
theory of Gr\"obner bases. From this, we obtain a criterion for noetherianity
of representations. The second gives a combinatorial criterion for a general
"rationality" result for Hilbert series of representations of C. This criterion
connects to the theory of formal languages, and makes essential use of results
on the generating functions of languages, such as the transfer-matrix method
and the Chomsky-Sch\"utzenberger theorem.
Our work is motivated by recent work in the literature on representations of
various specific categories. Our general criteria recover many of the results
on these categories that had been proved by ad hoc means, and often yield
cleaner proofs and stronger statements. For example: we give a new, more
robust, proof that FI-modules (originally introduced by Church-Ellenberg-Farb),
and a family of natural generalizations, are noetherian; we give an easy proof
of a generalization of the Lannes-Schwartz artinian conjecture from the study
of generic representation theory of finite fields; we significantly improve the
theory of Δ-modules, introduced by Snowden in connection to syzygies of
Segre embeddings; and we establish fundamental properties of twisted
commutative algebras in positive characteristic.Comment: 41 pages; v2: Moved old Sections 3.4, 10, 11, 13.2 and connected text
to arxiv:1410.6054v1, Section 13.1 removed and will appear elsewhere; v3:
substantial revision and reorganization of section