Finding whether a linear-constraint loop has a linear ranking function is an
important key to understanding the loop behavior, proving its termination and
establishing iteration bounds. If no preconditions are provided, the decision
problem is known to be in coNP when variables range over the integers and in
PTIME for the rational numbers, or real numbers. Here we show that deciding
whether a linear-constraint loop with a precondition, specifically with
partially-specified input, has a linear ranking function is EXPSPACE-hard over
the integers, and PSPACE-hard over the rationals. The precise complexity of
these decision problems is yet unknown. The EXPSPACE lower bound is derived
from the reachability problem for Petri nets (equivalently, Vector Addition
Systems), and possibly indicates an even stronger lower bound (subject to open
problems in VAS theory). The lower bound for the rationals follows from a novel
simulation of Boolean programs. Lower bounds are also given for the problem of
deciding if a linear ranking-function supported by a particular form of
inductive invariant exists. For loops over integers, the problem is PSPACE-hard
for convex polyhedral invariants and EXPSPACE-hard for downward-closed sets of
natural numbers as invariants.Comment: In Proceedings GandALF 2014, arXiv:1408.5560. I thank the organizers
of the Dagstuhl Seminar 14141, "Reachability Problems for Infinite-State
Systems", for the opportunity to present an early draft of this wor